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ABSTRACT
In this paper we consider efficient construction of “compos-
able core-sets” for basic diversity and coverage maximization
problems. A core-set for a point-set in a metric space is a
subset of the point-set with the property that an approxi-
mate solution to the whole point-set can be obtained given
the core-set alone. A composable core-set has the property
that for a collection of sets, the approximate solution to the
union of the sets in the collection can be obtained given the
union of the composable core-sets for the point sets in the
collection. Using composable core-sets one can obtain effi-
cient solutions to a wide variety of massive data processing
applications, including nearest neighbor search, streaming
algorithms and map-reduce computation.

Our main results are algorithms for constructing com-
posable core-sets for several notions of “diversity objective
functions”, a topic that attracted a significant amount of
research over the last few years. The composable core-sets
we construct are small and accurate: their approximation
factor almost matches that of the best “off-line” algorithms
for the relevant optimization problems (up to a constant
factor). Moreover, we also show applications of our results
to diverse nearest neighbor search, streaming algorithms and
map-reduce computation. Finally, we show that for an alter-
native notion of diversity maximization based on the max-
imum coverage problem small composable core-sets do not
exist.
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1. INTRODUCTION
One of the most popular approaches to processing massive

data is to first extract a compact representation (or synopsis)
of the data and then perform further processing only on the
representation itself. This approach significantly reduces the
cost of processing, communicating and storing the data, as
the representation size can be much smaller than the size of
the original data set. Typically, the representation provides
a smooth tradeoff between its size and the representation
accuracy. Examples of this approach include techniques such
as sampling, sketching, core-sets and mergeable summaries.

In this paper we focus on computing efficient representa-
tions for the purpose of diversity-aware summarization and
search, a topic that has attracted significant attention over
the last few years [20, 41, 7, 26, 40, 38, 18, 1, 32]. The goal of
this line of research is to design efficient methods for search-
ing and summarizing large data sets in a way that preserves
the diversity of the data. In most formulations, the summary
is a sub-set of the original data of some predefined size (say
k) that maximizes a certain diversity objective. For example
one could require that the minimum distance between any
pair of points in the summary is as large as possible, i.e., the
summary does not contain two “highly similar” items. Many
other, more refined, diversity objectives have been studied,
see Figure 1 for an overview.

In this paper we study specific diversity-aware represen-
tations called composable core-sets. An α-approximate com-
posable core-set for a diversity objective is a mapping from
a set S to a subset of S with the following property: for
a collection of sets, the maximum diversity of the union of
those sets is within an α factor of the maximum diversity



of the union of the corresponding core-sets. That is, one
can construct an approximately optimal solution for a given
data set by partitioning it into several (possibly overlapping)
blocks, computing a core-set for each block, and then solv-
ing the problem for the union of the core-sets. Composable
core-sets naturally lead to divide-and-conquer solutions to a
collection of massive data processing problems. In particu-
lar, they have been used for the following tasks:

• Streaming computation: In the data stream model, a
sequence of n data elements needs to be processed “on-
the-fly” while using only limited storage. Such an al-
gorithm can be easily obtained using composable core-
sets [22, 5]1. Specifically, if a composable core-set for
a given problem has size k, we start by dividing the
stream of data into

√
n/k blocks of size s =

√
nk. The

algorithm then proceeds block by block. Each block is
read and stored in the main memory, its core-set is
computed and stored, and the block is deleted. At the
end, the algorithm solves the problem for the union of
the core-sets. The whole algorithm takes only O(

√
kn)

space. The storage can be reduced further by utiliz-
ing more than one level of compression, at the cost of
increasing the approximation factor.

• Distributed data processing: composable core-sets can
be also used to process data in a distributed system,
where each machine holds a block of the data. The al-
gorithm is virtually identical to the one for streaming
data: for each block, a composable core-set is com-
puted and sent to the central server, where the com-
putation is completed. As an example, this idea is di-
rectly applicable in the map-reduce framework [17] and
gives an approximation algorithm in one round of map-
reduce: Using

√
n/k mappers, each mapper gets

√
kn

points as input and computes a composable core-set of
size k for this set. These sets will be passed to a single
reducer. The input of this reducer is the union of the
core-sets, which is of size at most k

√
n/k =

√
kn. It

computes and outputs a solution on this union, which
by the definition of core-sets is a good approximation
to the original problem. Recently, variants of this tech-
nique have been applied for optimization under map-
reduce framework [28, 31, 8].

• Similarity search: recently, composable core-sets have
been used to construct efficient near neighbor search
algorithms that maximize the diversity of the answers,
both in theory [2] and in practice [1]. This is done
by observing that several similarity search algorithms
(notably those based on the Locality-Sensitive Hashing
technique) proceed by hashing each point into multi-
ple buckets. Each query is then answered by retriev-
ing the points stored in the buckets that the query is
mapped into. Since the number of points stored in a
bucket might be large (which is the case, e.g., when the
data set contains one big cluster of close points), the
query answering procedure might be slow. To improve
the performance, the paper [1] proposed to replace the
content of each bucket by its core-set. By collecting the
core-sets stored in all relevant buckets and performing

1The paper [22] introduced this approach for the special
case of k-median clustering. More general formulation of
this method with other applications appeared in [5].

the computation over the their union, the algorithm
reports a diverse summary of the points close to the
query in time that depends on the number of buckets,
not the size of the whole data set. This is discussed in
more details in Appendix A.

The broad applicability of composable core-sets motivates
the study of efficient methods for constructing them. This
is the task we undertake in this paper.
Our results. In this paper we present a thorough study of
composable core-sets for several well-studied diversity maxi-
mization problems. Suppose that the set S of interest lives in
some metric space (∆, dist), and let div(S) be any function
that maps a set into a non-negative real number. The goal
of the diversity maximization problem is to find a subset S′

of S of size k that maximizes the diversity objective.
The specific diversity functions div considered in this pa-

per are described in Figure 1, following the taxonomy of
dispersion measures introduced in [13]. For each dispersion
function we provide the approximation factor of the com-
posable core-set that we obtain for that function. We note
that for all core-sets the approximation factor matches that
of the best “off-line” algorithm for the corresponding diver-
sity maximization problem [13] (up to a constant factor).
All core-sets are of size k.

The interpretation of the diversity measures is as follows.
First, remote-edge [1] and remote-clique [20] correspond to
the well-studied diversity notions where the objective is to
ensure that no two pairs of points are too “close” to each
other, or that an average pair distance of points is not too
“low”, respectively. Remote-pseudoforest falls in between
the two notions, as its goal is to ensure that the average
distance of a point to its nearest neighbor is not too “low”.
Remote-pseudoforest can be viewed as a diversity analog of
the well-studied Chamfer distance [27]. Remote-tree and re-
mote t-tree measure the diversity by the cost of clustering
the data using the Single Link algorithm [37]. Similarly,
remote-star measures the diversity by the cost of connecting
the points to the best center2. Finally, remote-matching,
remote-cycle and remote-bipartition are more “exotic” com-
binatorial variations of the aforementioned measures. We
include them to complete the table of [13].

All aforementioned notions of diversity are“pairwise”, i.e.,
they are a function of the pair-wise distances between the se-
lected items. We also consider a basic “higher order” notion
of diversity which has been previously discussed in the con-
text of diversity maximization[3, 10]. Intuitively, the idea is
to model diversity by considering a set of topics that each
item covers, and exploring the diversity or the union of top-
ics covered by a set of items. More specifically, we consider
the scenario where the items are binary vectors of topics,
and the diversity of a set of items is equal to their coverage
over another set of topics, i.e., the weight of the coordinate-
wise OR of the item vectors. As before, the goal is to choose
a set of size k which maximizes the total coverage. This is
directly related to the maximum k-coverage problem that
admits a tight 1 − 1/e-approximation algorithm [19]. We
show in Section 4 that this problem does not support com-
posable core-sets of size polynomial in k. In particular, for

2Note that the values of remote-clique and remote-star ob-
jectives are within a factor of Θ(k) from each other, and
thus the core-sets for the two objectives are equivalent up
to constant factors.



Problem Diversity of the point set S Approx. factor
Remote-edge minp,q∈S dist(p, q) O(1)
Remote-clique

∑
p,q∈S dist(p, q) O(1)

Remote-tree wt(MST (S)), weight of the minimum spanning tree of S O(1)
Remote-cycle minC wt(C) where C is a TSP tour on S O(1)
Remote t-trees minS=S1|...|St

∑t
i=1 wt(MST (Si)) O(1)

Remote t-cycles minS=S1|...|St

∑t
i=1 wt(TSP (Si)) O(1)

Remote-star minp∈S
∑
q∈S\{p} dist(p, q) O(1)

Remote-bipartition minB wt(B), where B is a bipartition (i.e., bisection) of S O(1)
Remote-pseudoforest

∑
p∈S minq∈S\{p} dist(p, q) O(log k)

Remote-matching minM wt(M), where M is a perfect matching of S O(log k)

Max k-Coverage
∑
i≤d maxp∈S pi , where pi denotes the ith coordinate of p no

√
k

log k
-approx.

core-set of size kβ

Table 1: Notions of diversity considered in this paper. We use S = S1|...|St to denote that S1 . . . St is a partition
of S into t sets.

any α ≤
√
k

log k
and any constant β > 0, there exists a set of in-

stances for which no α-approximate core-set of size kβ exists.
As an illustrative example of submodular maximization [33,
25], the maximum coverage problem has been recently stud-
ied from distributed computation perspective [16], e.g., in
the map-reduce framework [15, 29]. Our negative result for
existence of core-sets for this problem implies that one can-
not use the simple core-set approach to solve this problem
in distributed or streaming settings.
Our techniques. Our techniques for constructing com-
posable core-sets rely on off-line algorithms that solve the
corresponding diversity maximization problems. The three
algorithms are given in Preliminaries. Our contribution is
to show that the solutions produced by those algorithms
satisfy the composable core-set properties. The basic idea
is to show that, for each algorithm, one can construct a
mapping from each element in the optimum solution (to
the whole data set) and an element of the core-set. This
correspondence is then used to bound the error incurred
by the core-set. Note that for the remote-edge diversity
measure, this analysis is analogous to the analysis in [2] (al-
though that analysis was focused on the k-center clustering
as opposed to the diversity maximization).

Related Work.
Composable core-sets: The notion of core-sets has been
introduced in [5]. Informally, a core-set for an optimization
problem is a subset of the data with the property that solv-
ing the underlying problem on the subset gives an approxi-
mate solution for the original data. The notion is somewhat
generic, and many variations of core-sets exist. The notion of
composable core-sets used in this paper has been implicit in
earlier works that used core-sets for streaming applications.
For example, the paper [5] (Section 5) specifies composabil-
ity properties of ε-kernels (a variant of core-sets) that are
very similar to ours. To avoid confusion, in this paper the
term “core-set” always means “composable core-set” accord-
ing to the definition in the introduction.

The notion of composable core-sets is related to the notion
of merge-able summaries introduced in [4]. The main differ-
ence between the two notions is that aggregating merge-able
summaries does not increase the approximation error, while
in our case the error amplifies (similarly to [22]). In partic-

ular, every merge-able summary that is obtained by taking
a sub-set of the data is also a composable core-set, but the
opposite does not hold.

Diversity Maximization: The diversity maximization
problem studied in this paper generalizes the maximum dis-
persion problem [24, 20, 9]. This problem has been explored
in the context of diversity maximization for recommender
systems [20], and commerce search [9]. A 2-approximation
greedy algorithm has been developed for the unconstrained
variant of this problem [24], and the variant with knapsack
constraints [9]. More recently, local search algorithms have
been developed to get a 2-approximation algorithm for the
maximum dispersion problem under matroid constraints [3,
10].
Diversity in Recommender Systems and Web
Search: Ranking and relevance maximization along with di-
versification have been extensively studied in recommender
systems, web search, and database systems. In the context
of web search, maximizing diversity has been explored as a
post-processing step [11, 39]. Other papers explore ranking
while taking into account diversity by a query reformulation
for re-ranking the top searches [34] or by sampling the search
results by reducing homogeneity [6]. Other methods are
based on clustering results into groups of related topics [30],
or expectation maximization for estimating the model pa-
rameters and reaching an equilibrium [35]. Moreover, in the
context of recommender systems, diversification has been ex-
plored in various recent papers [41, 40]. For example, topical
diversity maximization is discussed in [41], and explanation-
based diversity maximization is explored in [40]. Finally,
this topic has been also explored in database systems for
example by presenting decision trees to users [14].

2. PRELIMINARIES
We start by formalizing the notion of diversity used in this

paper.

Definition 1. For a given set S ⊂ ∆, its k-diversity is
defined as divk(S) = maxS′⊂S,|S′|=k div(S′). We also refer
to the maximizing subset S′ as the optimal k-subset of
S. Note that k-diversity is not defined in the case where
|S| < k.

Definition 2. Let div be a diversity function defined for
subsets of ∆. A function c(S) that maps a set S ⊂ ∆ into



one of its subsets is called an α-composable core-set (α ≥ 1)
for div, if for any collection of sets S1 . . . SL ⊂ ∆ with |Si| ≥
k, we have

divk(c(S1) ∪ . . . ∪ c(SL)) ≥ 1

α
· divk(S1 ∪ . . . ∪ SL)

The core-set is of size k′ if for every S, |c(S)| ≤ k′. Note
that in general k′ does not need to be the same as k. For
example, in all applications mentioned in the previous sec-
tion, a core-set of size k2 would work as well when k is a
constant. However, as it turns out, all our positive results
give core-sets of size k.

Our algorithms for constructing core-sets are based on ex-
isting off-line approximation algorithms for the correspond-
ing diversity maximization problems. In the rest of this sec-
tion we review three such algorithms: GMM, Local Search
and Prefix.

2.1 GMM Algorithm
In this paper we use the following slight variation of the

“GMM” algorithm introduced in [21, 36]. The algorithm
receives a set of points S, and the parameter k as the input.
Initially, it chooses some arbitrary point a ∈ S. Then it
repeatedly adds the next point to the output set until there
are k points. More precisely, in each step, it greedily adds
the point whose minimum distance to the currently chosen
points is maximized. This algorithm was also utilized in
[13] to find approximation algorithms for several dispersion
problems.

Algorithm 1 GMM

Input S: a set of points, k: size of the subset
Output S′: a subset of S of size k.

1: S′ ← An arbitrary point a
2: for i = 2, . . . , k do
3: find p ∈ S \ S′ which maximizes minx∈S′ dist(p, x)
4: S′ ← S′ ∪ {p}
5: end for
6: return S′

It is easy to see that the running time of the algorithm
is O(nk). Also, observe that if we define the radius value
r = minp,q∈S′ dist(p, q) as the minimum pairwise distance in
the set S′, it is easy to see that the following two properties
hold:

• ∀p ∈ S′ : dist(p, S′ \ {p}) ≥ r

• ∀p ∈ S : dist(p, S′) ≤ r

Such sets S′ are said to have the anticover property.

2.2 Local Search Algorithm
Algorithm 2 shows the local search algorithm. This was

used in [3] to find a subset with approximate maximum di-
versity under matroid constraints for the case of Remote
Clique. The algorithm iteratively improves the current so-
lution by a factor of (1 + ε/n) and finds a more diverse
set of k points. Since the initial set contains the two far-
thest points, the total number of iterations needed is at most
log1+ε/n(k2) = O(n

ε
log k).

Algorithm 2 Local Search Algorithm

Input S: a set of points, k: size of the subset
Output S′: a subset of S of size k.

1: S′ ← An arbitrary set of k points which contains the
two farthest points

2: while there exists p ∈ S \ S′ and p′ ∈ S′ such that
div(S′ \ {p′} ∪ {p}) ≥ div(S′)(1 + ε

n
) do

3: S′ ← S′ \ {p′} ∪ {p}
4: end while
5: return S′

2.3 Prefix Algorithm
The Prefix algorithm was introduced in [13] which is used

to solve the approximate maximum dispersion problem in
the case of Remote Pseudo-forest and Remote Matching.
Note that the algorithm works only in the case when k ≤
n/2.

Algorithm 3 PREFIX Algorithm

Input S: a set of points, k: size of the subset
Output S′: a subset of S of size k.

1: Run GMM obtaining a set Y = {y1, · · · , yk} with cor-
responding radii r1, · · · , rk.

2: q ← the value from the set {1, · · · , k − 1} which maxi-
mizes q · rq.

3: Yq+1 ← the prefix subsequence of Y of length q + 1
4: Qi ← vertices of distance at most rq/2 from yi for i =

1, · · · , q + 1.
5: z ← b(q + 1)/2c.
6: {Qi1 , · · · , Qiz} ← the z sparsest spheres.
7: S′ ← the centers of {Qi1 , · · · , Qiz}
8: Add any set of k − z vertices from S \

⋃z
j=1Qij to S′

9: return S′

3. COMPOSABLE CORE-SETS FOR DI-
VERSITY MAXIMIZATION

This section provides algorithms for finding composable
core-sets for different notions of diversity defined in Table 1.
That is, we run one of the algorithms defined in Preliminar-
ies to get k points in each of the instances of the problem and
prove their union is an approximate core-set for the union
of the instances.

In all of the following cases, we let S1, · · · , SL ⊂ ∆ be
the subsets of ∆ that correspond to the instances of the
problem and let S =

⋃L
i=1 Si denote their union. For

each such instance Si, we find a core-set Ti and we let
T =

⋃L
i=1 Ti denote the union of the core-sets. Also we

let O = {o1, · · · , ok} be the optimal k-subset of S, that is
the subset of k points which maximizes the diversity. More-
over, we define Oi = {o ∈ O ∩ Si|∀j < i : o /∈ Sj} to be the
set of points from the optimal set in each of the instances
(we impose extra condition in order to make Oi’s a partition
of O).

Next, for each notion of diversity, we describe how to
choose Ti and compare k-diversity of T with that of S, which
is equal to the diversity of O.



3.1 Remote Edge

Lemma 1. The GMM algorithm computes a 3-
approximate composable core-set for the Remote Edge
problem.

Proof. We run the GMM algorithm on each of the sets
Si and let Ti = GMM(Si) be the point set returned by the

GMM and we let ri denote the radius of Ti. Let T =
⋃L
i=1 Ti

denote the union of the core-sets, and set r = maxi ri to be
the maximum radius over the instances. The goal is to prove
that divk(T ) ≥ divk(S)/3.

Define a mapping f : Oi → Ti which maps each point
o ∈ Oi to one of its closest points in the set Ti, i.e.,
dist(o, f(o)) = dist(o, Ti). By the anticover property of
GMM we have dist(o, f(o)) ≤ ri ≤ r. Note that since
Oi’s form a partition of O, for any o ∈ O, we can define
f(o) = fi(o) if o ∈ Oi.

It is easy to see that for any i, since T is a superset of Ti,
then divk(T ) ≥ div(Ti) = ri and thus divk(T ) ≥ r. Next,
note that if for two points o1, o2 ∈ O, we have f(o1) = f(o2),
then

div(O) ≤ dist(o1, o2) ≤ dist(o1, f(o1)) + dist(o2, f(o2))

≤ 2r ≤ 2divk(T )

and the lemma is proved. Otherwise f is a 1-to-1 mapping.
Now if div(O) ≤ 3r ≤ 3divk(T ) then in this case the lemma
is proved as well. Otherwise, we can assume that for any pair
of points o1, o2 ∈ O, dist(o1, o2) ≥ 3r and thus div(O) ≥ 3r.
Hence, by triangle inequality

dist(f(o1), f(o2))

≥ dist(o1, o2)− dist(o1, f(o1))− dist(o2, f(o2))

≥ div(O)− 2r

≥ div(O)− 2div(O)/3

≥ div(O)/3

since this holds for any pair o1, o2, the set {f(o1), · · · , f(ok)}
has diversity at least div(O)/3 and thus divk(T ) ≥ div(O)/3
and the lemma is proved.

3.2 Remote Clique, Remote Star and Remote
Bipartition

In this section, we show that the local search algorithm
gives a constant-factor approximation for the following di-
versity notions: Remote Clique, Remote Star and Remote
Bipartition.

Lemma 2. The local search algorithm computes a
constant-factor approximate composable core-set for the
remote-clique problem.

Proof. We run the Local Search algorithm on each of the
sets Si and let Ti = LS(Si) be the point set returned by the
Local Search and let ri represent the normalized diversity
of the corresponding sets Ti, i.e., ri = 1

(k2)
div(Ti) and set

r = maxi ri.

Claim 1. There exists a 1-to-1 mapping f : O → T such
that dist(o, f(o)) ≤ 25r for any o ∈ O

Proof. Build an unweighted bipartite graph Gx =
(VO, UT , Ex) with vertices of one side corresponding to O
and vertices of the other side corresponding to T as follows.

For any o ∈ O and s ∈ T , we connect vo ∈ VO to us ∈ UT
iff dist(o, s) ≤ x× r. Now, take any o ∈ O and suppose that
o ∈ Oi \ Ti, that is, o is in the ith instance but has not been
selected by LocalSearch algorithm. However, since no more
improvement on the set Ti could be made, we have∑

s∈Ti

dist(o, s) ≤ (k − 1)(1 +
ε

n
)ri ≤ kr

Note that since |Ti| = k, thus for at least (1− 1/x) fraction
of the values s in the above equation, we have dist(o, s) ≤ xr
and therefore the corresponding edges in the graph Gx exist.
Thus the degree of each vertex vo corresponding to o ∈ O\T
is at least k(1− 1/x).

First, take the graph G3. If G3 has a matching which satu-
rates the vertices of VO, then the claim is proved. Otherwise,
let M be a maximal matching in G3 such that for any point
o ∈ O∩T , the corresponding vertices vo and uo are matched
together. This means that the points corresponding to the
set of unmatched vertices in UT (which we denote by T \M)
is disjoint from O, and also O \M is disjoint from T . Let
A = O \M be the set of points which corresponds to the
unmatched vertices. Then for any point a ∈ A, since a /∈ T ,
the degree of va is at least 2k/3, and since M is a maximal
matching, all the neighbors of va should be matched in M .
Therefore there are at least 2k/3 points o ∈ O \ {a} such
that dist(o, a) ≤ 6r.

Now take the graph G25. If all vertices in VA = VO \M
are neighbors to all vertices in UT \M , then clearly G25 has
a saturating matching for O and thus the claim is proved.
Otherwise there exists a point a ∈ A and s ∈ T \M such
that dist(a, s) > 25r.

Let B ⊂ O be the set of points whose distance is at most
6r from a. Then as we proved earlier |B| > 2k/3. Hence, if
we replace the point a in the set O with the point s to get
the set O′ (note that since T \M is disjoint from O, we have
s /∈ O), the diversity will increase as follows.

div(O′)− div(O) =
∑

o∈O\{a}

dist(s, o)− dist(a, o)

=
∑

o∈B\{a}

dist(s, o)− dist(a, o)

+
∑

o∈O\B

dist(s, o)− dist(a, o)

≥
∑

o∈B\{a}

dist(a, s)− 2dist(a, o)

−
∑

o∈O\B

dist(a, s)

≥ 2k

3
× (dist(a, s)− 12r)− k

3
× dist(a, s)

=
k

3
(dist(a, s)− 24r) ≥ kr/3

which contradicts the fact that O has the optimal diversity.
Therefore the claim holds.

As claim 1 suggests, there is a 1-to-1 mapping between
the vertices of O and the vertices of T such that for each
o ∈ O we have dist(o, f(o)) ≤ 25r. First of all note that if(
k
2

)
× r ≥ div(O)/51 the theorem is proved since for one of



the Ti we have div(Ti) =
(
k
2

)
× r and thus

divk(T ) ≥ div(Ti) =

(
k

2

)
× r ≥ div(O)/51

Otherwise, we have that

divk(T ) ≥
∑

o1,o2∈O

dist(f(o1), f(o2))

≥
∑

o1,o2∈O

dist(o1, o2)− dist(o1, f(o1))− dist(o2, f(o2))

≥ div(O)−

(
k

2

)
× 50r

≥ div(O)(1− 50/51) = div(O)/51

So the lemma is proved and the algorithm computes a 51-
approximate core-set of size k.

Corollary 1. Local Search algorithm computes a con-
stant factor core-set for the minimum star and minimum
bipartition problems as well.

Proof. First note that for a set of k points Q, a star is
the tree achieved by connecting one point to all the others,
and its weight is sum of the weights of its edges. Also a bi-
partition of Q is a bipartite graph which divides the vertices
of Q into two parts of cardinality k/2 and its weight is the
sum of all the edges between the two parts. It can easily be
seen that

• by symmetry wt(minimum star(Q)) ≤
2wt( clique(Q))/k

• by triangle inequality

wt( clique(Q)) ≤ k × wt(minimum star(Q))

and that

• wt(minimum bipartition(Q)) ≤ wt( clique(Q))

• by triangle inequality

wt( clique(Q)) ≤ 5× wt(minimum bipartition(Q))

Therefore the same algorithm computes a constant factor
core-set for these two problems as well.

3.3 Remote tree, Remote Cycle, Remote t-
trees and Remote t-cycles

Lemma 3. The GMM algorithm computes a 6-
approximate core-set for the remote-tree problem.

Proof. We run the GMM algorithm on each of the sets
Si and let Ti = GMM(Si) be the point set returned by the

GMM and we let ri denote the radius of Ti. Let T =
⋃L
i=1 Ti

denote the union of the core-sets, and set r = maxi ri to
be the maximum radius over the instances. Now define a
mapping (this time not a 1-to-1) f : Oi → Ti which maps
each point o ∈ Oi to one of its closest points in the set
Ti, i.e., dist(o, f(o)) = dist(o, Ti). By anticover property of
GMM we have dist(o, f(o)) ≤ ri ≤ r.

It is easy to see that for any i, divk(T ) ≥ div(Ti) ≥ (k −
1)ri (since the minimum pairwise distance in Ti is ri), and
thus divk(T ) ≥ (k − 1)r. Now if div(O) ≤ 3(k − 1)r ≤

3divk(T ), then the lemma is proved. Otherwise let F =
range(f) = {f(o)|o ∈ O} (note that F is a subset of T ),
and let F+ ⊂ T be an arbitrary superset of F of size k.
Then by triangle inequality and shortcutting

div(O) = wt(MST (O)) ≤ wt(MST (F )) + kr

≤ wt(MST (F )) + 2(k − 1)r

which uses the fact that k > 1, otherwise any one point
is a solution. Next, note that given the MST (F+), we
can double the edges and traverse them using DFS and
remove the vertices not in F by shortcutting. Hence, by
triangle inequality, we find a Hamiltonian cycle of length
at most 2wt(MST (F+)) on the set F , therefore we have
wt(MST (F )) ≤ 2wt(MST (F+)) and thus

divk(T ) ≥ wt(MST (F+))

≥ wt(MST (F ))/2

≥ 1

2
[div(O)− 2(k − 1)r]

≥ div(O)

2
− div(O)

3

≥ div(O)
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Lemma 4. The same algorithm computes a 6 core-set for
the Remote-t-tree. The proof is very similar to that for the
Remote tree and hence moved to Appendix B.

Corollary 2. Note that since the minimum TSP tour is
within a factor 2 of the MST, the above algorithm also com-
putes a constant factor core-set for the remote-cycle problem
and remote t-cycle problem.

3.4 Remote Pseudoforest and Remote Match-
ing

Lemma 5. The GMM algorithm computes a O(log k)
core-set for the remote-pseudoforest problem.

Proof. We run the GMM algorithm on each of the sets
Si and let Ti = GMM(Si) be the point set returned by the

GMM. Let T =
⋃L
i=1 Ti denote the union of the core-sets.

It is shown in page 11 of the paper [13] that when we run
the Prefix algorithm on an input setA, the diversity achieved
by this algorithm is at least q · rq/4 and that q · rq/4 ≥
divk(A)/O(log k). Next, we compare running the PREFIX
algorithm on the set S and on the set T . Let rS1 , · · · , rSk
be the radii defined in line 1 of Algorithm 2.3 , and let qS

be the index chosen in line 2, when we run it on the set S.
Similarly, let us define rT1 , ·, rTk and qT , when we run the
algorithm on the set T .

However by Lemma 1, GMM algorithm computes a core-
set for minimum pairwise distances. Together with the fact
that running GMM in the Prefix algorithm on the sets S
and T preserves the radii upto a constant factor, we get
that rTi ≥ rSi /c, for any value of i ≤ k and some constant
c. The diversity achieved by the prefix algorithm is there-
fore divk(T ) ≥ qT · rTqT /4 ≥ qS · rTqS/4 ≥ qS · rSqS/(4c) ≥
divk(S)
O(log k)

For the same reason the GMM algorithm computes a
O(log k) core-set for the remote-matching problem as well



with the only difference that the value of the matching
achieved by the prefix algorithm when we run in on the
input set A is at least qrq/8 instead of qrq/4.

4. NON-EXISTENCE OF CORESET FOR
THE MAX K-COVERAGE

An instance of the max k-coverage problem is a collection
of sets. The objective is to find k sets in this collection whose
union has the maximum size.

Theorem 1. For any α <
√
k

log k
and any constant β > 1,

there is no α-approximate core-set of size kβ for the max
k-coverage problem.

Proof. Let U = {1, . . . , N} for a large N and k = m2.
We construct a number of instances of the problem as fol-
lows: For every subset S ⊂ U of size m2, we have an instance
IS consisting of all m-subsets of S. Assume, for contradic-
tion, that there is an α-approximate core-set, and let CS
denote the core-set on the instance IS .

Now, fix a m2-set S, and let R be a random m-subset of
S. For each fixed A ∈ CS , the random variable |A∩R| is dis-
tributed according to the binomial distribution Bin(m, 1

m
).

The probability that the value of this variable is at least
t is at most

(
m
t

)
1
mt < 1

t!
. With t = logm, this prob-

ability is at most O(m−c) for every constant c. Using
the union bound and the fact that |CS | ≤ m2β , we get:
Pr[∃A ∈ CS : |A ∩ R| > logm] < O(m2β−c) for ev-
ery constant c. We say that R is an easy subset of S if
∃A ∈ CS : |A ∩ R| > logm. Therefore for every S, at most
a O(m−γ) fraction of the m-subsets of S are easy, for every
γ.

We construct a graph whose vertex set is the set of all
m2 subsets of U . Two m2-sets S1 and S2 in this graph
are adjacent if |S1 \ S2| = m. We say that S1 marks a
neighbor S2 as bad if S1 \S2 is an easy subset of S1. By the
above argument, each vertex S1 marks at most an O(m−γ)
fraction of its neighbors as bad. Since the total indegree of
nodes in a graph is equal to the total outdegree, there must
be a vertex S1 in this graph such that at most an O(m−γ)
fraction of its neighbors have marked S1 as bad. Therefore,
at most an O(m−γ) fraction of the neighbors of S1 have
either marked S1 as bad or S1 has marked them as bad.
We call these neighbors the bad neighbors of S1, and the
remaining neighbors the good ones.

We now pick a collection of m2-sets S1, S2, . . . as follows:
S1 is the vertex defined above. S2 is an arbitrary good
neighbor of S1. Si+1 is a good neighbor of S1 such that
Si+1 \S1 does not intersect any of the sets Sj \S1 for j ≤ i.
We argue that for any i < m2, there is a set Si+1 with
the above properties that we can pick. This is because for
any x ∈ U \ S1, the fraction of neighbors of S1 that contain
x is precisely m

N−m2 . Therefore, by the union bound, the
fraction of neighbors of S1 that contain any of the elements

of Sj \ S1 for j ≤ i is at most m2i
N−m2 , which is less than 1/2

for N > 3m4. This means that at most a 1
2

+ O(m−γ) < 1
fraction of neighbors of S1 either have intersection with some
Sj \ S1 for j ≤ i or are bad. Thus, we can find Si+1 with
the desired properties, for i < m2.

Now, consider the union of the instances
IS1 , IS2 , . . . , ISm2−m

. This instance has a perfect k-

coverage solution: pick m non-overlapping m-subsets of S1

to cover S1, and for every i > 1, pick the m-subset Si \ S1.
The total number of subsets picked is m+m2−m = k, and
all of the O(m3) elements in S1 ∪ · · · ∪ Sm2−m are covered.
On the other hand, by our construction, we know that for
every i > 1, Si \ S1 is not an easy subset of Si. Therefore,
any set in CSi covers at most logm elements of Si \S1, and
for j 6= i, CSj does not cover any element of Si \ S1. Thus,
a collection of k sets in

⋃
i CSi can cover at most k logm

elements in
⋃
i(Si \S1) plus m2 elements of S1. This means

that the ratio of the best solution on the union of these
instances and the solution that is limited to the union of
the core-sets is at most m2 logm+m2

m3 < log k√
k

.

5. CONCLUSIONS AND OPEN PROB-
LEMS

In this paper we presented constructions of composable
core-sets for a wide range of diversity measures. As de-
scribed in the introduction and Appendix A, our core-sets
can be directly used to obtain constant-factor approxima-
tion algorithms (for the respective diversity measures) in the
context of data stream computation, distributed data pro-
cessing and diverse nearest neighbor search. Some of those
implications are essentially known (in particular, the stream-
ing and distributed algorithms for the remote-edge and the
remote-star measures [22, 12, 23] and the nearest neighbor
search algorithms for the remote-edge measure [2]). Other
results and implications are, to the best of our knowledge,
new.

Our work raises several interesting open questions. Are
there any other applications of composable core-sets, in ad-
dition to the ones listed in this paper ? Is there a gen-
eral characterization of diversity measures for which small
composable core-sets exist ? Is it possible to obtain better
approximation factors ?
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APPENDIX
A. APPLICATION TO APPROXIMATE

NEAREST NEIGHBOR
In this section, we briefly describe how we can apply the

aforementioned core-sets to solve k-diverse near neighbor
problem. The problem is defined as follows. Given a query
point q ∈ ∆, the goal is to report the maximum diversity set
S of k points in the ball of radius r around q. The points
in the set S are chosen from a dataset of points P ⊂ ∆ of
size n which is given to the algorithm at the preprocessing
time. We would like to answer queries in sublinear time
which necessitates solving the approximate problem. The
approximate k-diverse Near Neighbor is defined as follows.
For some approximation factors c > 1 and α > 1, we allow
the points of the reported set S to be within distance cr
of the query point, i.e., S ⊂ P ∩ B(q, cr). Moreover, we
require that the diversity of the set S is within an α factor
of the k-diversity of the optimal set, i.e., div(S) ≥ 1

α
divk(P∩

B(q, r)).
The definitions and algorithm mentioned here are from [1,

2] and are only included for completeness. Please see the



original papers for the detailed theoretical [2] or experimen-
tal [1] analysis of its performance. The algorithm uses the
techniques of locality-sensitive hashing. Its basic idea is to
hash the data and query points in a way that the probabil-
ity of collision is much higher for points that are close to
each other, than for those which are far apart. Formally, we
require the following.

Definition 3. A family H = h : ∆→ U is (r1, r2, p1, p2)-
sensitive for (∆, dist), if for any p, q ∈ ∆, we have

• if dist(p, q) ≤ r1, then PrH[h(q) = h(p)] ≥ p1
• if dist(p, q) ≤ r2, then PrH[h(q) = h(p)] ≤ p2

In order for a locality sensitive family to be useful, it has to
satisfy inequalities p1 > p2 and r1 < r2.

Given an LSH family, the algorithm creates L hash func-
tions g1, g2, · · · , gL, as well as the corresponding hash ar-
rays A1, A2, · · · , AL. Each hash function is of the form
gi =< hi,1, · · · , hi,K >, where hi,j is chosen uniformly at
random from H. Then each point p is stored in bucket gi(p)
of Ai for all 1 ≤ i ≤ L. In order to answer a query q, we
then search points in A1[g1(q)] ∪ · · · ∪ AL[gL(q)]. That is,
in each array, we only retrieve points from the single bucket
which corresponds to the query point q.

The aforementioned algorithm does not limit the number
of points stored in a bucket, and hence its running time is
unbounded. To avoid this problem we proceed as follows.
During the preprocessing stage, for each of the buckets in
all arrays Ai, we replace the bucket content by its core-
set, using the algorithms presented in this paper. Then,
given a query point q, we collect the core-set points from the
corresponding buckets of q, i.e, T =

⋃
i c(Ai[gi(q)]). Since

the core-sets has polynomial size in k, and the total number
of hash functions L is sublinear in n, then the total number
of points we collect in T is sublinear in n. By properties
of core-sets, the k-diversity of the set T is comparable to
k-diversity of the set S =

⋃
iAi[gi(q)]. Moreover, one can

set the parameters of LSH (i.e., L and K) such that with
high probability the two following conditions hold:

• P ∩ B(q, r) ⊂ S, every point in the r-neighborhood of
q is included in the set S.

• S ⊂ B(q, cr), any retrieved point is in the cr-
neighborhood of q, i.e., there are no outliers.

Thus, if β shows the approximation factor of the core-set,
then the value of divk(T ) is within β factor of the value
divk(S). Since S is a superset of (P ∩ B(q, r)), we get that
divk(T ) is within β-factor of divk(P ∩ B(q, r)). Therefore
we can run the “offline” algorithm on the set T to get an
approximate k-diverse subset of T whose diversity approxi-
mates the diversity of the optimal set.

More specifically, if β′ shows the best approximation fac-
tor for the “offline” version of diversity approximation, with

running time of T (m) onm points, we can get final bounds
as follows. We can achieve approximation factor α = ββ′,
with query time of

O(T (k(log k)
c

c−1 n
1

c−1 ) +
d

r
(log k)

c
c−1 n

1
c−1 logn)

and data structure space equal to O((n log k)1+
1

c−1 + nd).

B. PROOF OF LEMMA 4
Let wt(MSTt(A)) of a set of points A, denote the mini-

mum sum of the weights of spanning trees achieved by di-
viding A into t sets, i.e., minA=A1|...|At

∑t
i=1 wt(MST (Ai)),

where A = A1|...|At is a partition of A into t sets.
We run the GMM algorithm on each of the sets Si and

let Ti = GMM(Si) be the point set returned by the GMM

and we let ri denote the radius of Ti. Let T =
⋃L
i=1 Ti

denote the union of the core-sets, and set r = maxi ri to
be the maximum radius over the instances. Now define a
mapping (not necessarily a 1-to-1) f : Oi → Ti which maps
each point o ∈ Oi to one of its closest points in the set Ti,
i.e., dist(o, f(o)) = dist(o, Ti). By properties of GMM we
have dist(o, f(o)) ≤ ri ≤ r.

First of all, note that it only makes sense if t ≤ k/2 other-
wise in any optimum solution, at least 2t−k of the partitions
include exactly one of the k points and therefore incur no
cost. So instead we could consider the problem of choosing
k′ = k− t points and having t′ = 2(k− t) partitions in which
t′ ≤ k′/2.

It is easy to see that for any i, divk(T ) ≥ div(Ti) ≥ (k −
t)ri (since the minimum pairwise distance in Ti is ri), and
thus divk(T ) ≥ (k − t)r. Now if div(O) ≤ 3(k − t)r ≤
3divk(T ), then the lemma is proved. Otherwise let F =
range(f) = {f(o)|o ∈ O} (note that F is a subset of T ),
and let F+ ⊂ T be an arbitrary superset of F of size k.
Then by triangle inequality and shortcutting

div(O) = wt(MSTt(O)) ≤ wt(MSTt(F )) + kr

≤ wt(MSTt(F )) + 2(k − t)r

which uses the fact that t ≤ k/2. Next, note that given
the MSTt(F

+), we can double the edges and traverse them
using DFS and remove the vertices not in F by short-
cutting. Hence, by triangle inequality, we find a Hamil-
tonian cycle in each part of the partition with total length
at most 2wt(MSTt(F

+)) on the set F , therefore we have
wt(MSTt(F )) ≤ 2wt(MSTt(F

+)) and thus

divk(T ) ≥ wt(MSTt(F
+)) ≥ wt(MSTt(F ))/2

≥ 1

2
[div(O)− 2(k − t)r]

≥ div(O)/2− div(O)/3

≥ div(O)/6


